
Bayesian Analysis (0000) 00, Number 0, pp. 1

Learning to Anticipate Indirect Causes in
Dynamic Bayesian Networks

Alexander Motzek∗,† , Ralf Möller∗

Abstract. Modeling causal dependencies often demands cycles at a coarse-grained
temporal scale. If Bayesian networks are used for representing uncertainty in
temporal knowledge bases, cycles are frequently eliminated with dynamic Bayesian
networks over time, which, however, spreads indirect dependencies over time as
well, and enforces an infinitesimal resolution of time. Recently it has been shown
that if indirect dependencies are spread over time, spurious results are returned
and models can not represent causalities correctly. As a solution, it has been
shown that some dynamic Bayesian networks, called ADBNs, are able to resolve
cyclic dependencies intrinsically by a rapid adaptation to specific contexts at
every timestep. To learn such networks from long but incomplete datastreams,
parameter and structure learning of DBNs are fused into one atomic phase in this
article. We show that classic (dynamic) Bayesian networks are unable to learn an
anticipation of indirect causes in certain domains, and that classic approaches are
not applicable to learning ADBNs. We proposes a learning approach for ADBNs
considering rapidly adapting structures, while preserving (A)DBNs as a first-class
representation of uncertainty in temporal knowledge bases.

Keywords: learning Bayesian networks, cyclic dependencies, indirect influences,
context-specific independencies, activator dynamic Bayesian networks.

1 Introduction
Dynamic Bayesian networks (DBNs) are an extension to Bayesian networks motivated
from two perspectives, on the one hand as a manifestation of cyclic dependencies over
time, closely related to Markov models (Murphy, 2002), on the other hand as a stationary
process repeated over time in fixed time slices (Glesner and Koller, 1995) for reasoning
about historical and future evolutions of processes from uncertain, temporal knowledge
bases. Considering Pearl and Russell (2003) who emphasized that Bayesian networks
should be a direct representation of the world instead of a reasoning process, both views
seem to be conflicting. A model repeated over time with cyclic dependencies would
expand to infinity already for one timeslice. Therefore, e.g., Jaeger (2001) or Glesner
and Koller (1995) use a strict order of dependencies s.t. state variables of time t are
only dependent of states at t − 1. However, Motzek and Möller (2015b) show that
such non-causal models return spurious results for non-infinitesimal small timeslices, as
indirect influences are not anticipated anymore.

In the most extreme form of a DBN, all random variables are seen as being locally
dependent on each other, inevitably creating cyclic dependencies. In certain domains,

∗Universität zu Lübeck, Institut für Informationssysteme, Germany. motzek@ifis.uni-luebeck.de
moeller@uni-luebeck.de.
†Corresponding author

c© 0000 International Society for Bayesian Analysis DOI: 0000

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

http://bayesian.org
mailto:motzek@ifis.uni-luebeck.de
mailto:moeller@uni-luebeck.de
http://dx.doi.org/0000

2 Learning ADBNs

dependencies depend on a specific context formed by further random variables as shown
by Boutilier et al. (1996). Then, one can create a sound (acyclic) dynamic Bayesian
network (DBN), once one knows the formed context for every timeslice, e.g., knows all
future observations. However, as one can not know the future and a context changes at
every timeslice, a required structure can not be known in advance. To include all possible
dependencies in a classic DBN, these allegedly cyclic dependencies must be bend to a
previous timestep, creating “diagonal” models. Motzek and Möller (2015b) show that a
causal parametrization of such diagonal models is impossible and indirect influences are
not anticipated. This raises an interesting question addressed in this article: Can such
“diagonal” models learn a set of parameters from data containing indirect influences, such
that the learned model mimics the anticipation of indirect influences? The short answer
is: No, a learned diagonal model leads to completely different inference results.

Furthermore, Motzek and Möller (2015b) show that in such domains, DBNs are
well-defined even for cyclic dependencies. Most importantly they show that these DBNs,
called ADBNs, do not require external frameworks, remain in a classical calculus with
classical random variables, and precisely anticipate the intended indirect influences based
on a cyclic graph. It is shown that these ADBNs are able to rapidly adapt their structure
intrinsically at every timestep to a specific context and, thus, correctly anticipate indirect
influences. These contexts are specific instantiations of random variables in a timeslice.
This raises another interesting question addressed in this article: If these instantiations
are missing in data for learning, a structure to which this ADBN adapts cannot be
“seen” from data; does this still allow learning? Does one require heuristics to “guess” a
structure? The short answer, evaluated in this article is: By a modified EM algorithm,
ADBNs learn parameters closely representing original models and deliver nearly identical
inference results without a need for external frameworks “analyzing or guessing” a
structure.

Different approaches for learning DBNs under an unknown structure exist, such as
the structural EM algorithm by Friedman et al. (1998) and also for (slowly) changing
structures over time, e.g., by Robinson and Hartemink (2010). Still, even if one would
adapt an approach for a rapid structural change at every timestep, as required in
ADBNs, existing approaches are not applicable. Learning is almost always separated
into a threefold (incrementally repeated) problem of selecting/optimizing a structure,
restoring values of missing values, and optimizing/learning new parameters. It is crucial
to note that a structure is assumed to be constant for the act of restoring values of
missing variables, i.e., a distribution of potential value-candidates is calculated based on
one (previously optimized) structure. In ADBNs, a required structure is not knowable
in advance and a required structure is only identifiable in retrospect given a specific
context of each timeslice. This means, there exists no single structure on which value
candidates can be inferred. If inference is performed on one single structure, some
missing values of a datapoint (that shall be inferred) are fixed immediately by the choice
of one single structure. Effectively, there exists no difference between structure- and
parameter-learning in ADBNs.

This paper can be summarized as follows: We show that classic DBN formalisms are
neither able to anticipate nor are they able to learn indirect influences in certain domains.

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 3

Representing multiple structures in one ADBN model anticipates indirect influences
correctly, and fuses structure- and parameter learning into one atomic task. We propose
a learning approach for ADBNs for problems where effective structures are not (and
need not to be) known in advance, are rapidly changing over time, and are not evident
from data while learning. This is beneficial for applications where the interpretation of
data depends on further contexts and is otherwise neither explicable nor learnable, e.g.,
in complex probabilistic, temporal knowledge bases.

We motivate and introduce ADBNs in Section 2 by a running example, and derive a
learning approach for ADBNs for incomplete datasets in Section 3. Based on an EM
approach, we show that classic DBNs are unable to learn (from) indirect influences and
experimentally evaluate different scenarios of hidden variables in ADBNs in Section 4.
We discuss our results and related work in Section 5 and conclude with Section 6.

2 Activator Dynamic Bayesian Networks
After initial notations and definitions used throughout this paper, we demonstrate a
running example for ADBNs. We consider an example based on Motzek and Möller
(2015b) which outlines the necessity of ADBNs and shows why classic Bayesian networks
and associated learning approaches are not applicable in certain domains. We consider
DBNs describing a probabilistic process over time, where time represents a causal flow
of wallclock-time at a specific granularity suited to a given process. A common structure
over time allows for reasoning about an evolution of values of random variables, which
are defined as follows.

Notation 1 (State Variables). Let Xt
i be the random variable representing the ith state

variable Xi at time t, where Xt
i is assignable to a value xi ∈ dom(Xt

i). Let ~Xt be the
vector of all n state variables at time t, s.t.,

~Xt =
(
Xt

1, . . . , X
t
n

)ᵀ
.

A random variable is a state variable if it bears a history, i.e., is at least dependent on
Xt−1
i . Let P (Xt

i = xi) (or P (xti) for brevity) denote the probability of state Xi having
xi as a value at time t. If dom(X) = {true, false} we write +xt for the event Xt = true
and ¬xt for Xt = false as usual. If Xt

i is unspecified and not fixed by evidence, P (Xt
i)

denotes the probability distribution of Xt
i w.r.t. all possible values in dom(Xt

i). N

As usual, dependencies between random variables of and inside consecutive timeslices
exist, forming a dynamic Bayesian network (DBN) allowing for reasoning about evolutions
of values of random variables over time.

Definition 1 (Dynamic Bayesian Network). A DBN is a tuple (B0, B→) with B0 defining
an initial Bayesian network (BN) representing time t = 0, containing all state variables
X0
i in ~X0, and a consecutively repeated Bayesian network fragment B→ defining state

dependencies between Xs
i and Xt

j , with Xs
i ∈ ~Xs, Xt

j ∈ ~Xt, s ≤ t. For every random
variable Xt

i a local conditional probability distribution (CPD) P (Xt
i |parents(Xt

i)), e.g.,
as a CPT, is defined, where parents(Xt

i) is the set of parents of Xt
i in B0 or, respectively,

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

4 Learning ADBNs

B→. By repeating B→ for every time step t > 0, a DBN (B0, B→) is unfolded into a
Bayesian network defining its semantics as the joint probability over all random variables
P (~X0:tᵀ) as the product of all locally defined CPDs.

Dependencies, i.e., edges, between random variables defined in B0 and B→ are limited,
s.t. no cyclic dependencies are created during unfolding. N

Motzek and Möller (2015b) introduce a running example that highlights an imminent
problem of causally correctly representing a domain in a classic DBN formalism: a domain
where some dependencies depend on specific instantiations of some random variables,
which change at every time. To grasp all possible situations, a DBN must be designed
proactively with cyclic dependencies, where an actual structure of each timeslice is first
known once specific observations (or constraints) are known in the current timeslice, i.e.,
a required structure rapidly changes and adapts to a context formed at every timestep.

Example 1 (Taintedness domain). In a company, one is concerned with regulatory
compliance of employees. A corrupt employee possibly manipulates and transfers docu-
ments, based on which a recipient might commit a compliance violation, too. Recipients
unknowingly become corrupt as well, and spread false information throughout a company
as well. As recipients become corrupt unknowingly, we speak of taintedness and that an
employee is tainted in order to prevent a sense of false accusation. To trace back a po-
tential source for compliance violations and to reconstruct sequences of events, we model
a probabilistic regulatory-compliance domain using a DBN. The local interpretability of
specified conditional probability distributions allows for an intuitive design and, when
learned, deliver valuable information for themselves. We represent the taintedness of
an employee, say, Ctlaire, Dton, Etarl by state random variables in ~Xt. An employee
X influences another employee Y by a sent message at time t, represented by random
variable M t

XY . Then, P (+c1|+m1
DC) represents the probability that Claire is tainted at

time 1, given that we know that (at least) a message was transferred from Don to Claire
at time 1. Say, one collects message transfer observations from used office mail envelopes
that have been used during one day. Usually, such envelopes are reused multiple times
and one finds multiple transfers in an unknown temporal ordering for each day.

We intend to model that every employee is able to send a message to every other
employee. This means, locally seen, every employee, i.e., state variable, is dependent on
every other, which inevitably creates cyclic dependencies as shown in Figure 1, which we
call cyclic. �

The example shows that cyclic dependencies arise naturally in domains and are
required from a causal perspective. Note that employees, as well as message transfers
are classical random variables for which plain CPDs are specified. However, to maintain
in a classic DBN formalism, the only consequent option keeping the same number of
parameters and dependencies is to bend all dependencies to a consecutive timestep (see
Fig. 1, gray), creating a diagonal structure. However, as shown by Motzek and Möller
(2015b) and outlined in Example 2, indirect influences are then not anticipated anymore
during one timeslice. If Claire sends a message to Don and Don sends a message to Earl,
no indirect influences of Claire on Earl is anticipated anymore in a diagonal model. In

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 5

C0

D0

E0

C1

D1

E1

C2

D2

E2

M1
DC M1

EC

M1
CD

M1
ED

M1
CE M1

DE

M2
DC M2

EC

M2
CD

M2
ED

M2
CE M2

DE

Figure 1: Two options (black/gray) to represent the taintedness using an (A)DBN where
every employee (Claire, Don, Earl) can influence every other employee through messages
M t
XY . Syntactic DAG constraints of (D)BNs prevent cyclic dependencies and diagonal

(indicated with gray arrows) state dependencies are enforced. A cyclic ADBN (black) is
well-defined under similar DBN semantics and represents a world more accurately than
the diagonal option does.

fact, a diagonal option models a different domain, where an incubation period of one
timeslice (e.g., 1 day) is modeled.

In fact, a cyclic taintedness domain is directly evident in a cyber security application,
assessing how locally inflicted adverse effects on devices or services (taintedness of
employees) “spread” throughout a network by datatransfers (message transfers) leading
to causal chain of events potentially striking highly critical devices. If highly critical
devices are potentially not operating as intended, a complete company might fail their
business goals, or missions are not accomplishable anymore. Understanding the indirect
and transitive effects is frequently called a mission impact assessment. Motzek and
Möller (2016) discuss an extension of Motzek et al. (2015) for a probabilistically sound
mission impact assessments extended towards dynamic domains based on ADBNs for
ongoing and retrospective analysis in dynamic mission impact assessments. Due to
locally interpretable and understandable parameters, (A)DBNs are predestined for such
an application, and it is highly desirable to learn corresponding ADBNs, in order to
correctly obtain models for adverse affections through compromised data-transfers.

Fortunately, Motzek and Möller (2015b) show that the cyclic option outlined in Ex-
ample 1 is indeed a well-defined dynamic probabilistic graphical model and is remarkable
similar to a DBN, as message transfer variables represent, so called, activator random
variables. Activator random variables represent random variables for which CPDs of
state variables show certain properties. We use the notation AXY if a random variable
acts as an activator random variable which activates a dependency of random variable
Y on X in a given context.

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

6 Learning ADBNs

Definition 2 (Activation / deactivation criteria). Let dom(AXY) = {true, false}.
Motzek and Möller (2015b) define the deactivation criterion AXY = false as

∀x, x′ ∈ dom(X),∀y ∈ dom(Y),∀~z ∈ dom(~Z) :

P (y|x,¬aXY , ~z) = P (y|x′,¬aXY , ~z) = P (y|∗,¬aXY , ~z) ,

where ∗ represents a wildcard and ~Z further dependencies of Y . Given ¬aXY , ones says
that the dependence of X on Y is inactive. The activation criterion describes a situation
where Y becomes dependent on X, i.e., the CPD entry for y is not uniquely identified by
just +aXY and ~z, hence

∃x, x′ ∈ dom(X),∃y ∈ dom(Y),∃~z ∈ dom(~Z) :

P (y|x, +aXY , ~z) 6= P (y|x′, +aXY , ~z) .

Given +aXY , one says that the dependence of X on Y is active.

If for a random variable AtXY both activation and deactivation criteria are fulfilled
by a CPD definition of random variable Y , AtXY is called an activator random variable.
Then, let Astij be an activator random variable regarding a dependency from Xt

j on Xs
i .

Let ~As t represent the vector of all activator random variables between timeslices s and t.
For brevity, we write At for Att, and let ~Ati represent the vector of all activators relevant
for Xt

i , i.e., all A∗t∗i. N

In fact, the running example is a DBN in which a subset of random variables shows to
have activator nature according to Definition 2. In detail, random variables representing
message exchanges in Example 1 are activator random variables and, therefore, Example 1
represents an ADBN:

Definition 3 (Activator dynamic Bayesian network, ADBN). An ADBN is syntacti-
cally defined as a tuple (B0, B→) with B0 defining an initial Bayesian network (BN)
representing time t = 0 containing all states ~X0

i ∈ ~X0 and a consecutively repeated
activator BN fragment B→ consisting of dependencies between state variables Xs

i and
Xt
j , t−1 ≤ s ≤ t (Markov-1), and dependencies between state variables Xt

i and activator
random variables Astji. For every random variable Xt

i , Astij a local CPD over all parents,
e.g., as a CPT, is specified, where CPDs of state variables Xt

i follow Definition 2 s.t.
random variables Astij are activator random variables.

By repeating B→ for every time step t > 0, an ADBN (B0, B→) is unfolded into
a BN defining ADBN semantics as the joint probability over all random variables
P (~X0:tᵀ , ~A01:ttᵀ). N

Please note that activators in an ADBN are classic random variables and are part of
a modeled domain, i.e., activators are no auxiliary variables. ADBNs are restricted in
order to comply with a BN, i.e., follow a different well-definedness theorem:

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 7

Theorem 1 (ADBN well-definedness). An ADBN is well-defined, if it is a well-defined
DBN. An ADBN is well-defined for every regular instantiation ~a1:t of ~A1:t, i.e., if for
all t, ~at satisfies the acyclicity predicate A:

∀x, y, z ∈ ~Xt : A(x, z)t,A(z, y)t → A(x, y)t

¬∃q : A(q, q)t ,

with a acyclicity predicate A(i, j)t that is defined as

A(i, j)t =

{
false if ¬atij ∈ ~at

true if else
.

For every well-defined ADBN, the semantics as P (~X0:tᵀ , ~A01:ttᵀ) is sound and equivalent
to DBN semantics as the product of all locally defined CPDs. N

A proof for this theorem is given by Motzek and Möller (2015b, Sec. 3). Theorem 1
means that ADBNs are subject to a different acyclicity constraint, namely that not a
syntactic graph structure is forced to be acyclic, but rather that an instantiation of an
unrolled DBN becomes acyclic in each timestep. This means, observations or parameter
setting properties have to enforce that only well-defined regular instantiations are used for
inference. Informally Theorem 1 means that, if one could known all future observations in
advance, one could create a well-defined acyclic BN for a specific application proactively.
However, required structures are not knowable in advance and are changing at every
timestep depending on a specific context, i.e., an instantiation of some activator random
variables.

Please note that in ADBNs no external frameworks are involved analyzing a required
structure from observations, and that the ADBN formalism intrinsically handles the rapid
structural change that is required at every timestep without any introduction of a novel
calculus. In essence, an ADBN represents a classical DBN with classical random variables,
where some specific number constellations in CPDs allow for cyclic dependencies. On
top of that, Motzek and Möller (2015b) shows that solutions to filtering and smoothing
problems in ADBNs remain in the same complexity class as multiply connected DBNs
and, further, show that classical algorithms such as the forward-backward algorithm
remain applicable. Informally it can be said that Motzek and Möller (2015b) show that
DBNs are able and have been able ever since to be based on cyclic graphs for specific
number constellations in CPDs, despite every introduction to classical Bayesian networks
who almost always enforce DAGs. The following example further motivates the desire to
preserve context-specific cyclic dependencies in the running example.

Example 2 (ADBN well-definedness example). Continuing the running example, sup-
pose, one observes that Don and Earl were initially not corrupt ¬d0,¬e0, but Earl is
convicted at time 1 of compliance violations, i.e., one observes +e1. Further, one observes
transfers ¬m1

DC ,¬m1
ED,¬m1

EC ,¬m1
CE. Then, the cyclic option is a well-defined ADBN

and anticipates a (potential) indirect influence of Claire on Earl, explaining the source
of Earl’s violation by +c0, +m1

CD, +m
1
DE. One can say that, an ADBN rapidly adapts its

structure to the made observations and Claire influences Earl indirectly during day 1.

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

8 Learning ADBNs

However, in a diagonal option, no influence is exerted by Claire on Earl, and an
obtained inference result would be spurious, as Earl becoming tainted is inexplicable:
The only explanations for Earl’s violation are being corrupt in the first place (+e0), or
becoming tainted through Don’s message (+d0, +m1

DE) which are both contrary to the
made observations. The problem is that an indirect influence is spread over multiple
timeslices, i.e., over multiple days, e.g., day-0-Claire can first influence day-2-Earl in a
diagonal option. �

The example shows that cyclic dependencies are required in order to be a declarative
first-class world representation. Motzek and Möller (2015b) conclude that diagonal
(A)DBNs can not anticipate indirect causes, which enforces an infinitesimal resolution of
time, e.g., seconds, where indirect influences do not need to be considered. Moreover, this
example shows that diagonal (A)DBNs cannot be parametrized causally, i.e., from local
perspectives in pure cause→effect-relationships: the introduced “incubation-”period must
somewhat be overcome by spurious modifications to CPDs mimicking an anticipation of
indirect influences.

The running example has been especially chosen, as it represents a superclass of
all potential intra-timeslice DBNs (called a dense intra-timeslice structure). Note that
its defined joint probability distribution (JPD) is remarkably similar to a classic DBN
approach:

Proposition 1 (ADBN semantics). If an ADBN is well-defined (Thm. 1), the JPD
over all random variables is defined as the product of all locally defined CPDs. Therefore,
a dense intra-timeslice ADBN’s semantics is

P (~X0:tᵀ , ~A1:tᵀ) =
∏

X0
k∈ ~X

0

P (X0
k) ·

t∏
i=1

∏
Aicv∈ ~A

i

P (Aicv) ·
∏

Xik∈ ~X
i

P (Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ

k , X
i−1
k) . (2.1)

N

This proposition shows that an ADBN based on a cyclic graph still remains in a
similar calculus as classical DBNs, i.e., no novel operators are introduced and CPDs of
random variables are still handled as one is used to. In effect, this JPD encompasses all
potential intra-timeslice (A)DBNs and is therefore further used in derivations by which
one obtains universally applicable results.

In summary: In an ADBN, a specific context of instantiations (activators) steers an
ADBN’s structure. This means, model parameters and instantiations influence a structure
as well as an initially defined general structure. Given, say, a long but incomplete period
of observations of compliance infringements in a company, it is of utmost interest to
learn a cyclic ADBN to precisely predict future compliance violations and to reconstruct
events that lead to previous infringements.

Intending to learn ADBNs now raises two interesting questions: If in ADBNs a
structure is not known in advance, changes at every timestep, and is firstly known “live”
once a timeslice is (partially) instantiated, can we still learn ADBNs and can we still
learn from incomplete datasets? Do we require an external analysis of a structure at
every timestep?

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 9

A first thought could be to utilize learning approaches for changing structures
over time, e.g., by Robinson and Hartemink (2010) (cf. Section 5). However, such
learning approaches do often neither consider hidden variables nor incomplete datasets
and only consider slowly changing structures that cannot keep the pace of changing
structures, which is required in ADBNs. Moreover, even modifications of such learning
approaches to support rapidly changing structures under hidden variables can not learn
ADBNs, as there exists a more imminent problem: If an ADBN’s effective structure
depends on an instantiation, there exists no fixed structure for one timeslice on which
a partially unobserved instantiation can be restored. If one fixes a structure prior to
inference per timeslice, instantiations that shall be inferred, are fixed as well. Namely,
every missing edge in a structure, fixes the instantiation of associated activators to be
deactive. Therefore, inference must be performed on all possible structural candidates
simultaneously. Effectively, there exists no difference between parameter and structural
learning in ADBNs. In order to learn ADBNs, a different approach must be taken, and
in the following we show that a variation of an EM algorithm is able to learn cyclic
ADBNs from incomplete data under partially missing structural information, without an
explicit analysis of a structure of each timeslice and without introducing an overhead,
compared to classical approaches.

3 Learning Structures where
Structures are not Knowable

Learning is based on large amounts of data representing a (partially) observed state of
a process. Therefore, a dataset ~d0:t is a time series of instantiations of some random
variables in ~X0:t and ~A1:t. Without loss of generality, we consider that learning is
performed only on a single (long enough) time series ~d0:t of data. This means, a DBN
represents a process evolving over time, where time represents an actual irreversible flow
of time at a specific granularity, instead of an arbitrary construct of operation-”time”-slots.
This means, an initial BN fragment B0 is only instantiated once, making it impossible
to learn prior probabilities of B0.

Often, learning-approaches and, especially, EM-approaches are introduced informally,
by reducing learning to a simpler case of complete datasets, i.e., all values of variables are
available for learning. Learning parameters from complete datasets effectively reduces
to counting how often an event associated with a parameter is seen, i.e., learning from
complete datasets is linear in the number of parameters and the size of the dataset. Based
on learning from complete datasets, learning from incomplete data is often introduced
via an idea that virtual data counts are created by inferring all possible value candidates
from one incomplete datum. One has to hopefully expect that such an approach remains
applicable to cyclic ADBNs and that no external frameworks analyzing structures
separately are required, but as multiple structures are represented by one cyclic ADBN
and are subject to a novel acyclicity constraint, applicability is not granted. We therefore,
carefully derive a classic EM approach from a pure probabilistic point of view throughout
this section and evaluate its effectiveness in the upcoming section. To do so, one has to
carefully differentiate between to-be-learned parameters and a numerical instantiation of
them.

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

10 Learning ADBNs

Notation 2 (Parameters). Let ~Θ represent the vector of all to-be-learned parameters
as variables. Let ~ϑ represent a specific numerical instantiation of all parameters ~Θ. Let
P~ϑ(·) represent a probability derived based upon a set of a parameter instantiation ~ϑ,
i.e., P~ϑ(·) is a number. Let P~Θ(·) represent a probability based on a set of parameter
variables in ~Θ, i.e., P~Θ(·) is an equation with variables. Given a set of instantiated
parameters ~ϑ, there exists a specific probability P~ϑ(~d) of observing a dataset ~d, i.e., the
likelihood of the data. N

A dataset ~d0:t is seen as a probability distribution over all possible full-instantiations
~x0:t, ~a1:t conforming with ~d0:t under parameters ~ϑ that could have been observed, also
called the dataset distribution:

P~ϑ(~X0:tᵀ , ~A1:tᵀ |~d0:t) = α · P~ϑ(~X0:tᵀ , ~A1:tᵀ)

For inference, a dataset ~d0:t is seen as observed random variables (~z,~b)0:t.

Notation 3 (Vectors of observed and unobserved variables). Let ~Zt ⊆ ~Xt be a vector
of observed and ~ζt = ~Xt\~Zt be the vector of unobserved state variables. Let ~Bt ⊆ ~At be
a vector of observed activators. Likewise, let ~βt = ~At\ ~Bt be a vector of all unobserved
activators. Then, data ~dt is seen as observations of state variables ~z t (instantiation
assignments Xt

i = xi ∈ dom(Xt
i)), and as observations of activator random variables ~bt

(instantiation assignments Atij = aij ∈ dom(Atij)). N

Given a dataset distribution P~ϑ(~X0:tᵀ , ~A1:tᵀ |~d0:t), the probability of observing (note,
not to have observed) ~d0:t under parameters ~Θ is

P~Θ(
~d0:t) =

∑
~ζ0:t

∑
~β1:t

P~ϑ(
~X0:tᵀ , ~A1:tᵀ |~d0:t) · P~Θ(~X

0:tᵀ , ~A1:tᵀ) , (3.1)

further called the likelihood of the dataset, and where instantiations in ~d uniquely identify
the instantiation of respective random variables in ~D.

Following a maximum likelihood approach, it is the goal to find a parameter instanti-
ation ~ϑ∗ of ~Θ that maximizes the probability of observing ~d0:t, i.e.,

~ϑ∗ = arg max
~Θ

P~Θ(~d) = arg max
~Θ

log
(
P~Θ(~d)

)
, (3.2)

where an expectation maximization (EM) approach iterates between calculating a distri-
bution P~ϑ(~X0:tᵀ , ~A1:tᵀ |~d0:t) (E-step) and Eq. 3.2 (M-step). In fact, P~ϑ(~X0:tᵀ , ~A1:tᵀ |~d0:t)

is calculated trivially, but requires an intractable amount of memory, which is why in
the following an extended smoothing distribution is used.

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 11

Definition 4 (Extended smoothing problem). Given a probabilistic knowledge base
B0, B→, the extended smoothing problem is the problem of determining all extended
smoothing distributions k, k < t over all random variables in timeslices k and k−1 while
considering evidence ~z 0:tᵀ ,~b1:tᵀ until time t. This is, to obtain

P (~Xjᵀ , ~Aj
ᵀ

, ~Xj−1ᵀ , ~Aj−1ᵀ |~z 0:tᵀ ,~b1:tᵀ) , ∀j : 1 ≤ j < t .

We denote a parametrized extended smoothing problem as ExtdSP(B0, B→, ~z
0:t,~b1:t, t).

N

Finding exact solutions to extended smoothing problems is discussed in the digital
supplement, and, in summary, is linear in t like similar smoothing operations in classical
DBNs and only requires storage for a distribution over all random variables of two
timeslices.

For brevity, further derivations are given in the digital supplement in addition to
the proof for the following theorem on the derived learning approach. Notwithstanding,
when learning ADBNs one needs to consider activator criteria, for which we define the
following.

Definition 5. Let Xi
λ ∈ ~Xi be a state variable and let PΘ(xiλ|~xi

ᵀ\xiλ,~ai
ᵀ

λ , x
i−1
λ) be a to

be learned parameter. We partition ~aiλ into two vectors ~aiλ =
〈
+~aiλ,¬~aiλ

〉
containing active

and inactivate activator random variables. Then, let ~xi
ᵀ\xiλ =

〈
~xi�λ, ~x

i
�λ

〉
be a partition

of relevant and irrelevant dependencies of Xi
λ under an instantiation ~aiλ respective to the

activator criteria from Definition 2, such that

∀k +aikλ ∈ +~aiλ : xik ∈ ~xi�λ
∀k ¬aikλ ∈ ¬~aiλ : xik ∈ ~xi�λ .

Respectively let ~Xi
�λ,

~Xi
�λ represent the respective random variables of instantiations

~xi�λ, ~x
i
�λ. N

Using Definition 4 and Definition 5 one obtains an EM procedure.

Theorem 2 (EM procedure). Repeatedly evaluating

P ∗ϑ(xiλ|~xi
ᵀ

\xiλ,~ai
ᵀ

λ , x
i−1
λ) =

γ′(Xλ = xλ)

γ′(Xλ = +xλ) + γ′(Xλ = ¬xλ)
(3.3)

with γ′(Xλ = xλ) =

t∑
i=1

∑
~ζi−1\Xi−1

λ

∑
~βi−1

∑
~βi\ ~Aiλ

∑
~Xi
�λ

P~ϑ(~Xi−1ᵀ\Xi−1
λ , xi−1

λ , ~Ai−1ᵀ , ~Xiᵀ

�λ, ~x
iᵀ

�λ,~a
iᵀ

λ , ~Ai
ᵀ

\ ~Aiλ|~d0:t) ,

and

P ∗ϑ(Aiµν) =
γ′(Aµν = aµν)

γ′(Aµν = +aµν) + γ′(Aµν = ¬aµν)
(3.4)

with γ′(Aµν = aµν) =

t∑
i=1

∑
~ζi−1:i

∑
~βi−1

∑
~βi\Aiµν

P~ϑ(~Xi−1ᵀ , ~Ai−1ᵀ , ~Xiᵀ , ~Ai
ᵀ

\Aiµν , ai
ᵀ

µν |~d0:t) .

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

12 Learning ADBNs

for all parameters in ~Θ, is an algorithm that learns model parameters from incomplete
data, where even structural information, i.e., activators, are hidden. Every iteration
increases the likelihood of being able to observe ~d0:t under an optimized parameter set ~ϑ∗
and converges to a local optimum. At every iteration, one evaluates γ′(·), and respectively
solves ExtdSP(B0, B→, ~z

0:t,~b1:t, t) to obtain P~ϑ(~X0:tᵀ , ~A1:tᵀ |~d0:t), (Expectation-step),
and consecutively evaluates P ∗ϑ(·), (Maximization-step). N

That the proposed algorithm maximizes the likelihood in each iteration is proven
in the digital supplement by a continued, detailed derivation on the procedure, which
can be summarized as follows: By summing out a specific parameter, Eq. 3.2, i.e., the
maximization of the likelihood, is analytically solved in a closed form by partial derivation
and finding zeros. Under careful consideration of identical parameters due to activator
constraints, one obtains all equations stated by Theorem 2 after several transformations.

To summarize, a learning approach for dense intra-timeslice ADBNs, where a structure
cannot be known in advance, shows similar structure to EM algorithms for DBNs. In
fact, one obtains a commonly known form of “expected counts” (see also Russell and
Norvig, 2010) as a closed form for optimized parameters ~ϑ∗, as hoped for. Note that, at
no time an effective structure is made explicit, and throughout the learning procedure a
structure of each timeslice remains unknown. Therefore, we say that learning ADBNs
fuses structure- and parameter learning into one atomic phase.

In the previous section we have introduced the taintedness domain, where cyclic
ADBNs arise naturally, and diagonal (A)DBNs cannot be parametrized causally. In the
following section we learn taintedness domains from datasets and evaluate the proposed
learning approach on cyclic ADBNs and answer the question, whether diagonal (A)DBNs
could actually learn the taintedness domain s.t. diagonal models return similar inference
results to the novel cyclic models.

4 Convergence and Hidden Variables
This section explores and empirically evaluates different situations of hidden variables
while learning ADBNs. For empirical evaluation, we learn models from multiple datasets
gathered from simulated taintedness domains over long periods of time with N = | ~Xt|
employees, i.e., a long, but incomplete period of observations of compliance infringements
in a virtual company. We generate these datasets by using particle filters under randomly
generated CPDs following Definition 2 in the taintedness domain. To avoid impossible
situations we constrain local CPDs to contain only probabilities in the range [0.01, 0.99]
and restrain all priors to be 0.5. As mentioned after Example 1, the taintedness domain
reflects a cyber security application for a dynamic mission impact assessment, where,
informally, infections or transitive effects of adversary actions “spread” throughout a
network based on transferred data. Likewise, an application for the presented learning
approach evaluated in this section is directly evident: datasets, from which such dynamic-
mission-impact-assessments-ADBNs can be learned, are directly obtained by captured
network traffic metadata, e.g., “.pcap-”files, and corresponding information about local
impacts, e.g., intrusion protection and detection system, anti-virus scans, firewall breaches
or retrospective manual analyses.

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 13

To prove the convergence of learned parameters ~ϑ∗ (as stated by Thm. 2) towards
the original model parameters, we consider the absolute error between learned and
original CPDs in different situations of missing data for cyclic and diagonal (A)DBNs.
To validate learned models, we generate new sequences of observations and compare the
accuracy of inference results for filtering and smoothing problems. To do so we calculate
the Hellinger distance (a bound difference metric between [0, 1], cf. Harsha and Varma,
2011) between results obtained by the learned model and results obtained from the
original model. One needs to expect small differences of inference results, i.e., low, near
0 Hellinger distances.

In summary, more than 200 experiments confirm that learned CPDs, using the
learning procedure from Theorem 2, converge to a local optimum that closely represents
the original CPDs, even from incomplete datasets with a very low observability space (see
Fig. 4.) In combination with the analytical proof of Theorem 2 in the digital supplement,
we consider Theorem 2 as proven. �

In the following sections, we apply and discuss results of the learning procedure for
different observability spaces and structural models.

4.1 Learning from complete data

If a dataset ~d contains only full instantiations ~x0:t,~a1:t of all variables ~X0:tᵀ , ~A1:tᵀ ,
then a probability distribution P~ϑ(~X0:tᵀ , ~A1:tᵀ |~d0:t) allocates all probability mass at
P~ϑ(~d0:t|~d0:t) = 1.0, i.e., all other possible to-be-learned instantiations have probability
zero of having been seen. Informally this means, given complete data for learning, learning
parameters reduces to pure counts of observations.

As expected, learning from complete data achieves highly accurate results in repre-
senting original local CPDs (Fig. 2, 4:), and one obtains nearly identical inference
results (Fig. 3, 5: Hellinger distance near 0). Note that, by adhering a correct prior
P (+atij) = 0.5 in a dataset, not all possible activator settings are formed. This means,
not all individual subset-structures are learned sequentially, but that a complete dense
ADBN containing all possible substructures is learned as a bulk from data, without the
need to analyze effective structures. As learning from complete data does not require a
calculation of P~ϑ(~X0:tᵀ , ~A1:tᵀ |~d0:t), it is linear in the size of the dataset and the number
of parameters (further discussed in Sec. 5.)

4.2 Can diagonal ADBNs learn indirect influences?

In summary, no. The necessity of ADBNs is motivated by a causal design approach and
the need to anticipate indirect influences. Motzek and Möller (2015b) and Example 2
demonstrate that if a diagonal (A)DBN is parametrized from a causal design perspective,
spurious results are returned and indirect influences are not anticipated. However,
this raises interesting question: Can diagonal (A)DBNs learn from indirect influences
and learn to anticipate, or at least, mimic them? In order to answer this question,
we repeat the previous experiment with complete datasets for four employees and

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

14 Learning ADBNs

different structures: (a) a cyclic, dense intra-timeslice ADBN (as previously), (b) a
dense, diagonal inter-timeslice ADBN, (c) a dense, diagonal inter-timeslice DBN, and
(d) a tree-structured DBN. The difference between (b) and (c) is that (b) enforces
activator constraints as done in Eq. 3.3, but (c) does not and is learned by a classic EM
algorithm. To assure that sufficient datapoints are available for learning, we increase the
dataset size to 50 000 datapoints.

Case (d), a tree-structured DBN as called by Ghahramani (1997), represents a
previously undiscussed modeling approach, where as much intra-timeslice dependencies
are modeled as possible and remaining dependencies are bent to a previous timeslice. It
was not discussed previously, as it is an arbitrary decision on which dependencies are
bent and which not. Generally, one could analyze activator distributions to obtain a
most likely structure, which is correctly represented by intra-timeslice dependencies, and
remaining dependencies are bent to a previous timeslice. However, in our domain, all
structures are equally likely, which is why one has to arbitrarily choose some, e.g., choose
all downward-pointing (compare Fig. 1, but for four employees) dependencies to be
intra-timeslice. Then, from a reasoning perspective, a desired dependence between each
and every random variable exists in one timeslice in a tree-structured DBN. Although
these dependencies are causally incorrect, a learned model might be able to anticipate
indirect influences, but learned CPDs are obtained by a reasoning view, which does not
allow a local interpretation of them. Note that such a tree-structured DBN is the most
general form of a DBN that contains the same number of parameters and dependencies
as the discussed cyclic ADBN.

Experiments shown in Figure 2 show that learned CPDs heavily differ from the
original models. This does not come as a surprise, as we have already noted that an
naive adaption of CPDs in diagonal ADBNs cannot anticipate indirect influences, i.e.,
cannot learn the taintedness domain. However, a diagonal ADBN might be able to learn
a different set of parameters which mimics an anticipation of indirect influences. For
this, we compare inference results of classic filtering and smoothing problems from an
original model (from which the dataset was generated) to a learned model from cases
(a–d) in Figure 3. To enforce an anticipation of indirect causes, at every timestep a
state variable is observed randomly. According to an effective topological ordering in
a timestep t induced by ~bt, either the highest node (to enforce a forward inference of
indirect causes) or the lowest (to enforce a full backward inference to indirect causes,
i.e., abduction) is observed.

When validating learned non-cyclic models against observations requiring an antic-
ipation of indirect influences, experiments shown in Figure 3 show that diagonal and
tree-structured (A)DBNs deliver highly inaccurate results (Fig. 3: Hellinger distance
of , , is above 0.5), even when learned from a reasoning perspective. In fact,
filtering and smoothing distributions obtained from learned non-cyclic ADBNs are almost
as different from the original distribution as a distribution obtained from completely
random CPDs is (Fig. 3:). Note that all experiments are performed using the
same amount of data, and that learning a tree-structured DBN is as computationally
expensive as learning a cyclic ADBN. A tree-structured ADBN performs slightly more
accurately than a diagonal ADBN, as, at least, half of all dependencies are coincidentally

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 15

0 5 10 15 20 25 30 35 40 45 50

101

102

CPDs learned from complete data

Figure 2: Absolute error (ordinate) of learned parameters for different ADBN models
from complete datasets. Displayed for every ran experiment (abscissa). Classic diagonal
(A)DBNs (,) and tree-structured (A)DBNs () learn almost completely
different CPDs—compare with randomly generated CPDs are given (). As expected
learning a cyclic ADBN from complete datasetsin the taintedness domain () learns
nearly identical CPDs. Semi-logarithmic plot.

modeled causally correctly, where some indirect influences implied by observations are
then handled correctly. However, a tree-structured model remains inconsequent, as it is
ambiguous which dependencies are modeled in which way.

Interestingly, cases (b) and (c), i.e., a diagonal DBN with and without activator
constraints, show similar results. Analyzes of learned CPDs in both cases revealed that
models are learned where dependencies on other random variables are eliminated, and
a process solely based on a state-variable’s history is learned, i.e., all CPDs encoded
P (Xt

i | ~Xt−1ᵀ , ~At−1 tᵀ

i) = P (Xt
i |X

t−1
i). This emphasizes that diagonal (A)DBNs simply

do not understand indirect influences, and cannot be learned from data containing
indirect influences.

The following learning cases do not consider diagonal models anymore and focus how
cyclic ADBNs behave in extreme cases of incomplete data.

4.3 Hidden state variables

A common problem in classic hidden Markov models are hidden variables, where certain
state variables are constantly unobservable and whose expected values must be restored
during learning. In ADBNs no constant structure exists, and we extend hidden variables
in ADBNs by introducing the problem of varying observability spaces, where roles of
observable and unobservable variables rapidly change at every timestep. Therefore, we
randomly exclude instantiations of variables ~Xt from each dataset at every timestep with
a probability of 0.5. This means that inside one dataset ~d0:t in every data ~dt different
instantiations of ~xt are missing, and are sometimes missing completely. Figure 4 shows
that after few EM iterations, learned local CPDs converge to a local optimum closely
resembling the original CPDs (Fig. 4:). Further, inference results from a learned
model are very similar to results from the original model (Fig. 5: below 0.1.)

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

16 Learning ADBNs

0 20 40 60 80 100 120 140 160 180 200

10−1

100

Inference accuracy of learned diagonal & cyclic models

Figure 3: Inference accuracy of learned models from complete datasets. Hellinger distance
(ordinate) of filtering and smoothing (lighter color) results displayed per inference-
timepoint (abscissa). Classic diagonal (A)DBNs (,) and tree-structured (A)DBNs
() achieve unsatisfying inference accuracy. A learned cyclic model () nearly comes
to the same conclusions as the original model. For reference, results of randomly generated
CPDs are given (). Average of 50 experiments displayed. Semi-logarithmic plot.

4.4 Hidden activators

Learning datasets ~d with incomplete information on activators represents a novel problem
of most interest. If activator instantiations are missing in a dataset, actual structural
information for every timeslice is missing and must be restored based only on remaining
information. Note that, at least as much information must remain to assure regularity of
every learned ADBN (cf. Sec. 5). Therefore, we observe a set of activators to be deactive
in our experiments, i.e., the only known structural information are independencies of a
timestep and remaining structures are actively learned. Indeed, this fuses structural and
parameter learning into one atomic phase. Informally, such a situation means that one
cannot look at the to-be-learned data and “see” each required structure for a timeslice
and a structure must be read “between the lines,” i.e., is inferred live in combination
with the restoration of missing instantiations of random variables.

Classic structural EM algorithms, e.g., proposed by Beal and Ghahramani (2003)
or Friedman et al. (1998), score graphical models to avoid overly complex networks
and to avoid small local optima formed by an EM approach. In order to learn ADBNs
without sufficient structural information, a similar approach must be incorporated into
ADBN learning. Our experiments show that without full activator instantiations, an EM
approach converges towards too simple networks, where no dependencies are present at
all, i.e., a prior of near 0 for all P (+atij) was learned. To overcome a tendency towards too
simple models, one is able to fix a prior of activators to a suitable estimation (discussed
further in Sec. 5). Experimental results of Figure 4 show that with a fixed prior for
activator variables, learned CPDs quickly converge to a local optimum (Fig. 4:)
and deliver inference results in the same accuracy as when dealing with hidden state
variables (Fig. 5: compare and , both below 0.1).

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 17

0 5 10 15 20 25 30 35 40 45 50 55 60

31.6

2.71
4.37
7.13

1.54

Convergence of EM from (in)complete data

Figure 4: Convergence of learned CPDs towards the original CPDs (mean of absolute
error, ordinate) over number of EM iterations (abscissa) from fully observed data (,
50 experiments), unobserved state variables Xt (, 75 exp.), unobserved activator
random variables Atij (, 70 exp.) and unobservedXt, Atij (, 10 exp.). For reference,
errors of randomly generated CPDs are given (, 50 exp.). In all cases, learned models
converge towards the original models. Semi-logarithmic plot.

0 20 40 60 80 100 120 140 160 180 200

10−1

100

Inference accuracy from (in)complete data

Figure 5: Inference accuracy of learned models from incomplete datasets. Hellinger
distance (ordinate) of filtering and smoothing (lighter color) results display per inference-
timepoint (abscissa). Same experiments and colors as in Figure 4. For reference, results
obtained under randomly generated CPDs () are given. Learned models nearly come
to the same conclusions as the original model, even when structural information (~At) is
missing. Semi-logarithmic plot.

4.5 Hidden activators and state variables

If datapoints contain incomplete information on activators as well as state variables,
structural information is partially hidden, and effects of remaining influences between
state variables are hidden as well. In this case, a structure is not known in advance
and structural context information is missing as well, but information from which
structural context information can be restored is (partially) missing as well. Nevertheless,
multiple experiments show that the proposed EM algorithm with fixed activator priors
converges to a local optima with acceptable error (Fig. 4:) and which achieve

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

18 Learning ADBNs

satisfactory inference results compared to the original model (Fig. 5:). Note that for
these experiments the length of each dataset was not increased, i.e., significantly fewer
individual instantiations in each datapoint are available for learning.

5 Discussion and Related Work
Our approach for learning ADBNs is based on an EM approach for hidden variables in
BNs as, e.g., presented by Ghahramani (1997) and Friedman (1997). In fact, Theorem 2
resembles a familiar “virtual” data count approach. Problems of hidden variables in
addition to hidden structures have also been well studied by Friedman (1998) and have
been applied to DBNs by Friedman et al. (1998), but all are subject to the assumption
that a structure is knowable before random variables are instantiated. Thus, structural
EM algorithms are greatly applicable to learning diagonal ADBNs, which, however,
return spurious results (as demonstrated in Sec. 4 and Ex. 2), and are not applicable to
learning cyclic ADBNs, as there exists no single structure on which an E-step can be
performed.

A need for evolving structures over time has also been investigated by Robinson and
Hartemink (2008) in the form of non-stationary DBNs (NSDBNs) and by Song et al.
(2009) in the form of time-varying DBNs (TVDBNs), which both find great applications
in the field of biomedicine. Robinson as well as Le Song present learning approaches
for such networks from complete datasets, i.e., no hidden variables are considered, and
focus on slowly evolving processes, where a structure remains almost constant between
two timeslices. Using an ADBN has the benefit of being able to proactively model cyclic
dependencies and to rapidly change a structure depending on a context at every timestep
and does not require an explicit scoring and optimization of learned structures over time.
A need for a sometimes rapidly switched structure has also been presented by Yoshida
et al. (2005) by using Markov switching in linear models in an application towards
gene networks, but veers away—unlike ADBNs—from a world-representing first-class
declaration character of (D)BNs as emphasized by Pearl and Russell (2003).

Models in which a context steers an effective structure are a main point of (dynamic)
Bayes multinets (DBMs) by Geiger and Heckerman (1996) and by Bilmes (2000). In
DBMs an effective structure depends on one context-variable, but a general structure
is bound to classic acyclicity constraints which prohibits a representation of multiple
(intra-timeslice) DBNs in one model. A further consideration of roles and implications
of context-specific independencies in probabilistic graphical models (PGMs) is done by
Milch et al. (2005) focusing on an increased expressiveness of PGMs by the framework
of (infinite) contingent Bayesian networks (CBNs). In CBNs edges are labeled with
instantiations of some random variables, if the edge, i.e., dependency, is subject to a
context-specific change. This edge-labeling follows a similar motivation as activator
random variables do, and, similarly, an ADBN-activator-random-variable-instantiation
AXY = +axy can be seen as such an edge label in CBNs. Most notably, Milch et al. identify
that certain domains cannot be modeled as one acyclic PGM and cyclic dependencies
are required as we have as well motivated by the taintedness domain. However, Milch
et al. (2005), similarly to Geiger and Heckerman (1996), introduce a novel calculus

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 19

for their context-specific PGMs, which stands in a significant contrast to ADBNs. In
ADBNs no novel calculus is required, no external “outerloop” is required, and all random
variables, CPDs, and the JPD as the product of all locally defined CPDs are business
as usual. Moreover, CBNs make acyclicity constraints explicit by exclusive edge-labels,
i.e., it is impossible to instantiate a (unrolled) cyclic CBN, whereas, in the ADBN
formalism, a cyclic ADBN may be instantiated/unrolled, as regularity constraints are
never enforced or required to become explicit. As Motzek and Möller (2015a) show,
this circumstance is highly beneficial, as not only acyclicity is a regularity constraint.
Motzek and Möller (2015b) show that show that classical algorithms such as the forward-
backward algorithm remain applicable for solving filtering or smoothing problems in
ADBNs. While CBNs may be able to represent ADBNs to some extent, it remains
unclear whether the novelly introduced CBN-calculus still allows for these algorithms to
persist and remain applicable.

The need to anticipate indirect influences arises from naturally timesliced data,
evolving over time, known only in coarse grained timeslices containing hidden variables.
These are contrary domains suited for Nodelman et al.’s (2002) continuous time Bayesian
networks (CTBNs) and related learning approaches (Nodelman et al., 2003). Still,
ADBNs and the presented learning approach can be seen as an addition to CTBNs,
where observations affect variables in an uncertain coarse-grained temporal interval,
while anticipating all potential implications of hidden variables during these intervals.

A cyclic ADBN contains all possible sequences formable by activator and state
variables, and not solely the most likely sequences. Therefore, when learning cyclic
ADBNs from data containing frequent, repeated sequences, such sequences must manifest
themselves in CPDs and Markov-n ADBNs are an direct application to mining frequent
sequences from incomplete, temporal datastreams. As shown by Saleh and Masseglia
(2008), such frequent sequences might only exist in certain context, which is seen as a
hidden variable in learning (cylic) ADBNs.

The computational complexity of the proposed learning approach for incomplete
data is exponential in the number of random variables and in the number of missing
instantiations in data. Please note that the same complexity, and the same amount of
learning data, is required for learning a classic DBN, e.g., a tree-structured DBN and,
still, DBNs show to be useful in practice. However, as we have shown, classic DBNs such
as tree-structured DBNs are unable to anticipate indirect influences in extreme cases and
return spurious results. Our learning approach shows a similar schema to classic learning
approaches and is based on a smoothing distribution for which approximate solutions
can be found via sampling sampling based approaches. If “virtual” data points are
created by a sampling procedure, learning (A)DBNs reduces the complexity of counting
samples. For example, learning an ADBN with 25 random variables from complete
datasets with 100 000 datapoints only took 1.7s on average. Note that, for the scope of
this article we used a dense intra-timeslice ADBN, i.e., the most general intra-timeslice
ADBN where all activator random variables are present. The dense intra-timeslice is
chosen s.t. the proposed learning approach is universally applicable, as it encodes all
possible intra-timeslice DBN structures. Notwithstanding, in practice, not always all
dependencies are subject to a context-specific change which will lead to fewer random
variables naturally.

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

20 Learning ADBNs

In this work, we consider situations where at least sufficient structural independence
information remains in data. By adequate specification of local activator CPDs, it is
possible to constrain ADBNs to assign zero-probabilities to non-regular instantiations
by assigning a belief over possible activator constellations, i.e., structures. This means
that by an adequate modeling approach, learning from data without any structural
information, i.e., completely missing activator instantiations, is possible. This is closely
related to the fact that a prior distribution over activator random variables must be
fixed in our approach and is directly related to specify adequate heuristics finding and
optimizing structures in structural EM algorithms. In fact, punishing overly complex
structures, already represents a prior belief about potential structures. Note that, a
distribution over potential structure candidates is directly embedded into the ADBN
formalism and represents a plain additional random variable, i.e., does not require an
external framework for externally creating DBN candidates. In one formalism therefore,
structural- and parameter learning is collapsed to one atomic problem and integrates
reasoning under multiple structure candidates. The latter idea is a novel view on work
by Friedman and Koller (2003), but without external frameworks and solved in one
world-representing first-class declaration of a Bayesian network.

6 Conclusion
In this paper we have derived a learning approach for ADBNs, where a structure is only
knowable in a specific context of each timeslice, i.e., an instantiation of random variables.
We demonstrate on a running example motivated by a cyber security application that
even if parts of structure relevant information are missing and, thus, no structure is
knowable, ADBNs are still able to learn model parameters which reciprocally decide
an effective structure. We have shown that not even the most general form of DBNs
is able to learn the taintedness-domain under the same number of dependencies, and
cyclic ADBNs are causally required. As ADBNs represent superclasses of Markov-1
DBNs, parameter and structural learning of ADBNs are fused into one atomic phase of
constraint parameter learning, while being able to handle hidden variables and hidden
structural information.

Future work is dedicated to investigate on the applicability and merits of ADBN
learning towards data mining and classic (D)BN learning under hidden variables and
unknown structures.

References
Beal, M. J. and Ghahramani, Z. (2003). “The Variational Bayesian EM Algorithm for

Incomplete Data: with Application to Scoring Graphical Model Structures.” Bayesian
Statistics, 7: 453–464. 16

Bilmes, J. A. (2000). “Dynamic Bayesian Multinets.” In UAI 2000: 16th Conference on
Uncertainty in Artificial Intelligence, Stanford University, Stanford, California, USA,
June 30 - July 3, 2000 , 38–45. 18

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

A. Motzek et al. 21

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). “Context-Specific
Independence in Bayesian Networks.” In UAI 1996: 12th Conference on Uncertainty
in Artificial Intelligence, Reed College, Portland, Oregon, USA, August 1-4, 1996 ,
115–123. 2

Friedman, N. (1997). “Learning Belief Networks in the Presence of Missing Values
and Hidden Variables.” In ICML 1997: 14th International Conference on Machine
Learning, Nashville, Tennessee, USA, July 8-12, 1997 , 125–133. 18

— (1998). “The Bayesian Structural EM Algorithm.” In UAI 1998: 14th Conference
on Uncertainty in Artificial Intelligence, University of Wisconsin Business School,
Madison, Wisconsin, USA, July 24-26, 1998 , 129–138. 18

Friedman, N. and Koller, D. (2003). “Being Bayesian About Network Structure. A
Bayesian Approach to Structure Discovery in Bayesian Networks.” Machine Learning ,
50(1-2): 95–125. 20

Friedman, N., Murphy, K. P., and Russell, S. J. (1998). “Learning the Structure of
Dynamic Probabilistic Networks.” In UAI 1998: 14th Conference on Uncertainty in
Artificial Intelligence, University of Wisconsin Business School, Madison, Wisconsin,
USA, July 24-26, 1998 , 139–147. 2, 16, 18

Geiger, D. and Heckerman, D. (1996). “Knowledge Representation and Inference in
Similarity Networks and Bayesian Multinets.” Artificial Intelligence, 82(1-2): 45–74.
18

Ghahramani, Z. (1997). “Learning Dynamic Bayesian Networks.” In Adaptive Processing
of Sequences and Data Structures, International Summer School on Neural Networks,
E.R. Caianiello, Vietri sul Mare, Salerno, Italy, September 6-13, 1997, Tutorial
Lectures, 168–197. 14, 18

Glesner, S. and Koller, D. (1995). “Constructing Flexible Dynamic Belief Networks
from First-Order Probabilistic Knowledge Bases.” In ECSQARU 1995: Symbolic
and Quantitative Approaches to Reasoning and Uncertainty, European Conference,
Fribourg, Switzerland, July 3-5, 1995 , 217–226. 1

Harsha, P. and Varma, G. (2011). “Hellinger Distance.” In Lecture Notes on Commu-
nication Complexity, School of Technology and Computer Science, Tata Institute of
Fundamental Research, Mumbai, India. 13

Jaeger, M. (2001). “Complex Probabilistic Modeling with Recursive Relational Bayesian
Networks.” Annals of Mathematics and Artificial Intelligence, 32(1-4): 179–220. 1

Milch, B., Marthi, B., Sontag, D., Russell, S. J., Ong, D. L., and Kolobov, A. (2005).
“Approximate Inference for Infinite Contingent Bayesian Networks.” In AISTATS
2005: 10th International Workshop on Artificial Intelligence and Statistics, Bridgetown,
Barbados, January 6-8, 2005 . 18

Motzek, A. and Möller, R. (2015a). “Exploiting Innocuousness in Bayesian Networks.”
In AI 2015: 28th Australasian Joint Conference on Artificial Intelligence, Canberra,
ACT, Australia, November 30 - December 4, 2015 , 411–423. 19

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

22 Learning ADBNs

— (2015b). “Indirect Causes in Dynamic Bayesian Networks Revisited.” In IJCAI
2015: 24th International Joint Conference on Artificial Intelligence, Buenos Aires,
Argentina, July 25-31, 2015 , 703–709. 1, 2, 3, 4, 5, 6, 7, 8, 13, 19

— (2016). “Context- and Bias-Free Probabilistic Mission Impact Assessment.” Technical
report, Universität zu Lübeck, Institut für Informationssysteme. Under review.
URL http://www.ifis.uni-luebeck.de/~motzek/techrep-miamim.pdf 5

Motzek, A., Möller, R., Lange, M., and Dubus, S. (2015). “Probabilistic Mission Impact
Assessment based on Widespread Local Events.” In NATO IST-128 Workshop:
Assessing Mission Impact of Cyberattacks, NATO IST-128 Workshop, Istanbul, Turkey,
June 15-17, 2015 , 16–22. 5

Murphy, K. P. (2002). “Dynamic Bayesian Networks: Representation, Inference and
Learning.” Ph.D. thesis, University of California, Berkeley. 1

Nodelman, U., Shelton, C. R., and Koller, D. (2002). “Continuous Time Bayesian
Networks.” In UAI 2002: 18th Conference on Uncertainty in Artificial Intelligence,
University of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002 , 378–387. 19

— (2003). “Learning Continuous Time Bayesian Networks.” In UAI 2003: 19th Conference
on Uncertainty in Artificial Intelligence, Acapulco, Mexico, August 7-10, 2003 , 451–458.
19

Pearl, J. and Russell, S. (2003). “Bayesian Networks.” In Arbib, M. A. (ed.), Handbook
of Brain Theory and Neural Networks, 157–160. MIT Press. 1, 18

Robinson, J. W. and Hartemink, A. J. (2008). “Non-Stationary Dynamic Bayesian
Networks.” In NIPS 2008: 22nd Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 8-11, 2008 , 1369–1376. 18

— (2010). “Learning Non-Stationary Dynamic Bayesian Networks.” Journal of Machine
Learning Research, 11: 3647–3680. 2, 9

Russell, S. J. and Norvig, P. (2010). Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education. 12

Saleh, B. and Masseglia, F. (2008). “Time Aware Mining of Itemsets.” In TIME 2008:
15th International Symposium on Temporal Representation and Reasoning, Université
du Québec à Montréal, Canada, 16-18 June, 2008 , 93–97. 19

Song, L., Kolar, M., and Xing, E. P. (2009). “Time-Varying Dynamic Bayesian Networks.”
In NIPS 2009: 23rd Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 7-10, 2009 , 1732–1740. 18

Yoshida, R., Imoto, S., and Higuchi, T. (2005). “Estimating Time-Dependent Gene
Networks from Time Series Microarray Data by Dynamic Linear Models with Markov
Switching.” In CSB 2005: 4th International IEEE Computer Society Computational
Systems Bioinformatics Conference, Stanford, California, USA, August 8-11, 2005 ,
289–298. 18

imsart-ba ver. 2014/10/16 file: ba-mlem.tex date: August 19, 2016

http://www.ifis.uni-luebeck.de/~motzek/techrep-miamim.pdf

	Introduction
	Activator Dynamic Bayesian Networks
	Learning Structures where Structures are not Knowable
	Convergence and Hidden Variables
	Learning from complete data
	Can diagonal ADBNs learn indirect influences?
	Hidden state variables
	Hidden activators
	Hidden activators and state variables

	Discussion and Related Work
	Conclusion
	References

